
156 The International Arab Journal of Information Technology, Vol. 13, No. 1A, 2016

Constraints Aware and User Friendly Exam

Scheduling System

Mohammad Al-Haj Hassan
1
 and Osama Al-Haj Hassan

2

1
Computer Science Department, Zarqa University, Jordan
2
Computer Science Department, Isra University, Jordan

Abstract: Scheduling is a crucial task for schools, universities, an d industries. It is a vital task for any system containing

utilization of resources to fulfill a certain criterion. Utilization of such resources usually includes several conflicting

constraints that scheduling has to take into account. Exam scheduling is an essential key for schools and universities in order

for exams periods to be smooth. In this paper, we present an exam scheduling system that employs graph coloring scheduling

technique. We focus on two aspects: First, the constraints our system handles, second, the user friendly interface of the system.

Keywords: Exam scheduling, user friendly, constraints, optimization, conflict, graph coloring.

Received September 16, 2015; accepted October 18, 2015; published on line January 28, 2016

1. Introduction

Scheduling is needed in various aspects of life such as

reservations, project scheduling, timetabling,

workforce scheduling, appointments, transportation

scheduling, and scheduling in entertainment [10]. It is

also a necessity in schools and universities in order to

generate exam schedules [2].

The process of generating exam schedules is not a

straight forward one. There are many constraints that

should be taken into consideration such as available

instructors in a time period, available halls and labs,

number of concurrent exams. In fact, finding the

optimal exam schedule that satisfies given constraints

is considered NP-Hard problem [3].

There are many well known scheduling techniques,

such as graph coloring [8, 12], fuzzy logic [2],

simulated annealing [5], particle swarm [6], genetic

algorithms [4], memetic algorithms [7], and ant colony

[14]. The one we use in our system is a graph coloring

scheduling algorithm which we already proposed in a

previous work [8].

The contribution of this paper is to design exam

scheduling system that embodies the following: First,

our exam scheduling system covers as many

constraints as possible which make our system

generate accurate exam schedules; second, the design

of our system is user friendly which makes it easy to

understand and use by non tech savvy people.

The rest of the paper is organized as follows: First,

in section 2 we discuss related work in scheduling

research area. After that, in section 3 we comprehend

on the various constraints we take into consideration in

the exam scheduling process. Next to that, in section 4

we discuss the graph coloring algorithm we use in our

system. Consequent to that, we propose in section 5 the

requirements of scheduling exams in real world

scenarios. Following that, we present our design for

the exam scheduling system in section 6. Then, we

conclude our work in section 7.

2. Literature Review

Exam scheduling is a form of time tabling problem and

it has been studied extensively in literature. Selemani

et al. [12] use the widely known Recursive Largest

First (RLF) algorithm to color a graph that represents

different sections in Sokoine University of Agriculture.

The work in [6] presents a survey of different particle

swarm techniques for solving exam scheduling

problem. Hosny and Al-Olayan [4] use a genetic

algorithm to generate exam schedules. They consider

two dimensional chromosome consisting of days as

one dimension and exams as another dimension. The

genetic algorithm they use relies on mutation operator

and excludes crossover operator. The work in [14] uses

an ant colony approach to generate exam schedules.

The approach relies on constructing an initial solution

comprising days, rooms, slots, and exams. Then,

exams schedule is developed by tracking pheromone of

ants trying to make a tour to find optimal exam

schedules. In [13], a schedule is generated by

searching among heuristics and this is achieved by

using iterative local search and a set of move operators

that tend to improve the quality of the outcome

schedule. A survey of different exam scheduling

techniques can be found in [1, 9]. A clonal selection

algorithm that produces exam schedules is proposed in

[14], where in this work, a set of solutions (antibodies)

are developed and the affinity (fitness) of those

solutions are calculated based on a fitness function.

After that, the fittest antibodies are chosen to be cloned

Constraints Aware and User Friendly Exam Scheduling System 157

with a certain degree of mutation in order to find better

solutions. Sabar et al. [11] discuss a honey-bee mating

optimization algorithm which is used to find near

optimal exam schedules. The algorithm relies on queen

(current best solution), drones (trial solutions), workers

(heuristics), and brood (new solutions). The algorithm

first generates a pool of solutions where the best one is

chosen as the queen and the others are considered

drones. Drones (trial solutions) mate with the queen

(current best solution) using crossover and that

generates new solutions.

3. Exam Scheduling Variables and

Constraints

Our system takes into consideration several variables

and constraints. This is of utmost importance so that

the generated schedule meets the operation of real

world scenarios. The following is a list of those

variables and constraints:

• Count of Days: The count of days allowed for exam

scheduling. This can be a specific number or it can

be open such that our system uses the minimum

number of days needed to generate a schedule.

• Count of Time Slots: The count of time slots during

which exams can be scheduled.

• Type of Exam: The type of exam such as first,

second, mid, or final exams.

• Concurrent Exams: A student cannot have more

than one exam in the same time slot of a given day.

• Count of Exams for Students: The maximum count

of exams held in the same day for one student.

• Exam Position: Indicates whether the system has to

schedule exams using predefined day and time rules

or the system has the freedom to schedule the exam

in any day and time slot.

• Conflicts: Sometimes when a fixed number of days

are specified, conflicts may arise such as count of

exams in one day for a given student exceeds the

allowed limit. So, this parameter indicates if a

conflict is allowed. If conflicts are not allowed

(Hard Constraint), then few exams may remain

unscheduled.

• Exams per Time Slot: The maximum number of

exams that can be scheduled in a given time slot.

• Monitoring Tasks: The maximum count of

monitoring tasks that can be assigned to an

instructor.

• Concurrent Monitoring: An instructor cannot have

two simultaneous monitoring tasks.

• Concurrent class with monitoring: An instructor

cannot have a monitoring task at the same time of

his a class he or she teaches.
• Concurrent Class with Student Exam: A student

cannot have an exam at the same day and time of a
class he attends unless the exam pertains to that
particular class.

• Concurrent Exams: An instructor cannot have two

simultaneous exams. The same constraint applies

for students.

It is worth mentioning that most of the above

constraints are parametric. Only constraints that

constitute predefined conditions will be imposed on

our system rather than considering them parameters.

4. Exam Scheduling using Graph Coloring

Our exam scheduling system is based on our work in

[8], wherein a novel technique for exam scheduling

using graph coloring is proposed. In that work, we

represented exam scheduling problem as an undirected

weighted graph G that is an ordered pairs (V, E, W),

where V is graph nodes, E are edges between nodes,

and W is a weight function that gives weight to edges.

Here, a node corresponds to a section of a course and

an edge between two nodes, together with its weight,

pertains to number of common students between the

two sections. Adjacent nodes are sections that share an

edge with weight (number of common students)

greater than zero. Example of an exam scheduling

problem represented in a weighted undirected graph is

shown in Figure 1.

Figure 1. Sections represented as a graph.

Colors indicate available time slots in a given day.

A color has concurrency limit which represents the

number of exams that can concurrently be held at that

time slot. This is usually controlled by the number of

available halls/ labs in that time slot. For example an

instance of a color is time slot (09-10) and concurrency

limit for this color is 5 meaning that there are 5

available halls/ labs in time slot (09-10). The graph

coloring problem is concerned with coloring graph G

such that no two adjacent nodes have the same color.

This is logical because adjacent nodes have students in

common, and therefore, cannot be scheduled in the

same day and time slot. The graph coloring algorithm

starts by building adjacency matrix of sections as

shown in Table 1. An entry in the adjacency matrix

corresponds to count of common students between the

two sections. Each section has a degree and a weight

values. A degree of a section “S” refers to the count of

sections with which the section “S” shares edges. A

weight of a section “S” is the summation of weight

4

2 4

S3

S

S

S

S
S

3 S

5

6

158 The International Arab Journal of Information Technology, Vol. 13, No. 1A, 2016

values on the edges “S” shares with other sections.

Table 2 shows corresponding degrees and weights for

the sections in Figure 1. The next step is to order

sections list “secList” in descending order based on

degree which is shown in Table 3. Now, some sections

might share the same degree, therefore we order them

in descending order based on their weight as illustrated

in Table 4. After that we iterate over each section “S”

in the ordered list such that the following steps are

executed for each section:

• Find the first day and slot that does not violate the

constraints listed in section 3. Assign that time slot

to the section “S”.

• Find the adjacency list “adjS” of the section “S”.

• Order the sections of “adjS” based on the same

degree and weight ordering explained previously.

• For each section “S2” in “adjS”, find the first day

and slot that does not violate constraints listed in

section 3. Assign that time slot to the section “S2”.

The graph coloring algorithm is shown in Algorithm 1.

Table 1. Adjacency matrix of graph in figure 1.

S7 S6 S5 S4 S3 S2 S1

0 0 0 0 4 2 0 S1

0 0 3 0 0 0 2 S2

0 0 0 3 0 0 4 S3

4 5 0 0 3 0 0 S4

6 0 0 0 0 3 0 S5

0 0 0 5 0 0 0 S6

0 0 6 4 0 0 0 S7

Table 2. Degrees and weights of sections in figure 1.

S7 S6 S5 S4 S3 S2 S1

2 1 2 3 2 2 2 Degree

10 5 9 12 7 5 6 Weight

Table 3. Sections of table 2 ordered based on degree.

S6 S7 S5 S3 S2 S1 S4

1 2 2 2 2 2 3 Degree

5 10 9 7 5 6 12 Weight

Table 4. Sections with the same degree ordered based on weights.

S6 S2 S1 S3 S5 S7 S4

1 2 2 2 2 2 3 Degree

5 5 6 7 9 10 12 Weight

5. Real World Scenario Requirements

In this section, we take the graph coloring algorithm
mentioned in [8] as a base for our system that takes
into consideration real world scenarios. In the original
algorithm, conflicts are not allowed. However, in real
world scenario, the school/university may force a
requirement for the count of days in the schedule. In
this case, conflicts may occur such as a student having
count of exams in a given day greater than the allowed
number. In original algorithm, the type of exam is
really a general concept. In real world scenario, there
are specifics that may differ according to type of exam.
For example, during first, second, and mid exams,
scheduling an exam during the same day and time slot

in which the section is taught is considered normal.
This is not normally true for final exams where fixed
time periods are available and no classes are held.
Another example is related to hall availability. In final
exams all halls are available while in first, second, and
mid exams some halls are already occupied with
classes. In the original algorithm, the concurrency limit
is a general concept which means the count of exams
that can be held in a given day and slot. This is
normally translated to the count of available halls in
that day and time slot. However, in real scenarios we
might consider a case where multiple exams can be
held in the same hall; and this redefines the
concurrency limit definition. In our original work, we
have not discussed any constraints related to assigning
exam monitoring tasks for instructors. This is
definitely a needed issue in real world scenarios. In the
original work all sections are considered unique
entities. However, in real scenarios we have “Shared
Sections” which arise because of changes on degree
requirements. When a major change occurs to degree
requirements, this change has to be applied on new
students. But, it cannot be applied on previous students
who are committed to the previous degree plan. These
results in having two or more sections that are assigned
different course number and/or different section
number because they belong to different degree plans.
However, those sections are really the same unique
section. So, for exam scheduling purposes, those
sections have to be treated as one. One point to
mention is that in real world scenarios, an instructor
might request that his exam be held in a lab instead of
a theory hall. This is not mentioned in our original
work.

Algorithm 1: The graph coloring algorithm.

Construct Adjacency Matrix of sections in the section list
“secList”
Order sections of “secList” in descending order based on
degree
For sections in “secList” with the same degree
Order them in descending order based on weight
End For
For each section “S” in the ordered list “secList”
Assign to “S” the first day and time slot such that constraints

are not violated
Retrieve “adjS” which is the adjacency list of “S”
Order sections of "adjS" in descending order based on degree
For sections of "adjS" with the same degree
Order them in descending order based on weight
End For
For each section “S2” in “adjS”
Assign to "S2" the first day and time slot such that constraints
are not violated
End For
End For

6. Exam Scheduling System Design

In this section, we shed light on the design and features

of our system. Our system is developed using Java. It

interacts with a MySQL database which stores

information of sections being taught in a given

semester. The database contains the following tables:

Constraints Aware and User Friendly Exam Scheduling System 159

• Course: Represents courses to which sections

belong.

• Section: Represents sections of courses.

• Instructor: Represents teachers of sections.

• Student: Represents students who register sections.

• Hall: Represents halls and labs.

When the user runs the system, data is loaded from

database. The main window has several menus and it

looks like Figure 2.

Figure 2. Scheduling system main window.

First, “Settings” menu enables user to control

several parameters in the scheduling process. One of

the menu items in the settings menu is “Parameters”

which opens the window illustrated in Figure 3. It

allows the user to enter maximum number of days

allowed for schedule, maximum number of exams that

can be held in a given time slot, maximum number of

exams for a student in one day, and maximum number

of monitoring tasks permissible for an instructor. The

user can also select whether the desired schedule is

with minimum number of days such that it contains no

conflicts or is strict to the entered maximum number of

days regardless of having conflicts. Also, the user can

choose if all sections of a given course are to be

scheduled in the same time slot or each section is

scheduled on its own slot. In addition, the user can

determine the type of exam such as first, second, mid,

or final exam. Finally, scheduling can occur based on

fixed rules coming from the registration department.

These rules come in the form “A section that is taught

on a given day and time would be scheduled in a given

day and time”. On the contrary, the user can choose

“dynamic” scheduling that uses the graph coloring

algorithm explained in this paper to generate a

schedule with fewest conflicts. The second option in

settings menu is “Schedule Days”. Here, the user can

choose the exact dates of schedule days. This can be

done by selecting the date of the first day from a

calendar and then clicking “Change Dates” which

changes the dates of the remaining days accordingly.

Figure 3: Parameters window.

 In addition, the user can use a calendar beside each

day to change the date of that day. This is shown in

Figure 4.

After the user finishes choosing settings, he or she

can go through the process of electronic exams using

the menu “Electronic Exams”. Clicking on the single

option available in that menu causes the window in

Figure 5 to show up. This window contains two lists.

The list on the left contains sections that are originally

taught in a hall, the list on the right contains sections

that are originally taught in a lab. The user can use the

two buttons to move sections between the two lists:

This is handy in case we need to schedule an exam in a

lab when it is originally taught in a hall and vice versa.

The user can also manually schedule sections. This can

happen when for example an instructor of a given

section presents a special request to schedule one of his

exams in a given day and time due to personal or

urgent circumstances. This can be done by using

“Manual Scheduling” menu which shows the window

in Figure 6. The window contains two lists: The list to

the left contains unscheduled sections and the list to

the right contains scheduled sections, the second list is

usually empty unless sections are manually scheduled

which causes them to move to the list on the right. To

manually schedule a section, the user selects it from

list to the left and clicks on the button with right arrow.

This opens a window showing schedule days, time

slots, and available halls/ labs in that day/ slot. The

user chooses the desired parameters and clicks “OK”.

This causes the section to be manually scheduled and it

will be transferred to the menu on the right.

If a scheduled section on the right list should be

moved back to the unscheduled sections list, the

section can be selected and the button with left arrow

is clicked.

After settings are selected, electronic exams are

chosen, manual scheduling is performed. The user is

now ready to generate a new schedule using

“Schedule” menu, the first option in this menu is

“Generate New Schedule”, and clicking this option

160 The International Arab Journal of Information Technology, Vol. 13, No. 1A, 2016

causes the scheduling algorithm to run. The algorithm

will take into consideration the settings, electronic

exams, and manual scheduling previously chosen and

then a new schedule are generated.

Figure 4. Days control window.

One piece of information that the system

provides is the count of students having one, two, and

three exams per each day. This gives an indication

about quality of generated schedule since students

having three exams in one day is normally not allowed

and students having two exams in the same day should

be kept as minimum as possible. But cases like that can

happen if the user selected the settings that force the

system to work within very few days which causes

three exams issue to arise. In this case, students usually

request deferring one of the three exams. This piece of

information also gives an indication of how busy a

building where exams are held during a given day. The

second option in “Schedule” menu is “Store Schedule

as HTML File” which causes generated schedule to be

stored in a readable user friendly way. Examples of

stored schedules are illustrated in Figures 7 and 8. It is

clear that Figures 7 and 8 contain just parts of lengthy

schedules as test samples.

The previous description shows the details of our

scheduling system and the steps the user undertakes in

order to generate a new schedule. We showed the

aspects related to offering a flexible easy to follow and

user friendly exam generation process.

Figure 5. Electronic exams and paper exams.

Figure 6. Manual scheduling.

Constraints Aware and User Friendly Exam Scheduling System 161

Figure 7. Example of stored schedule.

Figure 8. Example of stored schedule.

7. Conclusions

In this paper a new exam scheduling system is

proposed. The system covers several key constraints

related to schedule days, schedule time slots, conflicts,

students, and instructors. The system design is user

friendly which allows users to generate a schedule in a

flexible and easy process. Our system utilizes a graph

coloring scheduling algorithm which provided a strong

base for generating satisfactory exam schedules.

References

[1] Babaei H., Karimpour J., and Hadidi A., “A

Survey of Approaches for University Course

Timetabling Problem,” Computers & Industrial

Engineering, vol. 86, pp. 43-59, 2015.

[2] Cavdur F. and Kose M., “Fuzzy Logic and

Binary-Goal Programming-Based Approach for

Solving the Exam Timetabling Problem to Create

a Balanced-Exam Schedule,” International

Journal of Fuzzy Systems, pp. 1-11, 2015.

[3] Gonsalves T. and Oishi R., “Artificial Immune

Algorithm for Exams Timetable,” Journal of

Information Sciences and Computing

Technologies, vol. 4, no. 2, pp. 287-296, 2015.

[4] Hosny M. and Al-Olayan M., “A Mutation-Based

Genetic Algorithm for Room and Proctor

Assignment in Examination Scheduling,” Science

and Information Conference, pp. 260-268, 2014.

[5] Kalender M., Kheiri A., Ender A., and Burke E.,

“A Greedy Gradient-Simulated Annealing

Selection Hyper-Heuristic,” Journal of Soft

Computing, vol. 17, no. 12, pp. 2279-2292, 2013.

[6] Larabi S. and Sainte M., “A Survey of Particle

Swarm Optimization techniques for Solving

University Examination Timetabling Problem,”

Artificial Intelligence Review, vol. 44, no. 4, pp.

537-546, 2015.

[7] Lei Y., Gong M., Jiao L., and Zuo Y., “A

Memetic Algorithm Based on Hyper-Heuristics

for Examination Timetabling Problems,”

International Journal of Intelligent Computing

and Cybernetics, vol. 8, no. 2, pp. 139-151, 2015.

[8] Malkawi M., Al-Haj Hassan M., and Al-Haj

Hassan O., “A New Exam Scheduling Algorithm

Using Graph Coloring,” International Arab

Journal of Information Technology. vol. 5, no. 1,

pp. 80-86, 2008.

162 The International Arab Journal of Information Technology, Vol. 13, No. 1A, 2016

[9] Pillay N., “A Survey of School Timetabling

Research,” Annals of Operations Research, vol.

218, no. 1, pp. 261-293, 2014.

[10] Pinedo M., Zacharias C., and Zhu N.,

“Scheduling in the Service Industries: An

Overview,” Journal of Systems Science and

Systems Engineering, vol. 24, no. 1, pp. 1-48,

2015.

[11] Sabar N., Ayob M., and Kendall G., “Solving

Examination Timetabling Problems using

Honey-Bee Mating Optimization (ETP-HBMO),”

in Proceedings of Multidisciplinary International

Conference on Scheduling: Theory and

Applications (MISTA), Dublin, Ireland, pp.399-

408, 2009.

[12] Selemani M., Mujuni E., and Mushi A., “An

Examination Scheduling Algorithm using Graph

Colouring-The Case of Sokoine University of

Agriculture,” International Journal of Computer

Engineering & Applications, vol. 3, no. 1, pp.

116-127, 2013.

[13] Soria-Alcaraz J., Ochoa G., Swan J., Carpio M.,

Puga H., and Burke E., “Effective Learning

Hyper-Heuristics for the Course Timetabling

Problem ,” European Journal of Operational

Research, vol. 238, no. 1, pp. 77-86, 2014.

[14] Thepphakorn T., Pongcharoen P., and Hicks C.,

“An Ant Colony Based Timetabling Tool,”

International Journal of Production Economics,

vol. 149, pp. 131-144, 2014.

Mohammad Al-Haj Hassan is a

professor of Computer Science since

the year 2002. He obtained his BSc

and MSc from The University of

Jordan in 1973 and 1977,

respectively, and his PhD degree in

computer science from Clarkson

University at NY, USA, in 1983. His research interests

include: Computer algorithms and applications, graph

algorithms and applications, natural language

processing, and machine learning. He worked in

several universities inside and outside Jordan both in

academic and administrative positions, and he has

more than 35 publications and authored books.

Osama Al-Haj Hassan is an

assistant professor of computer

science. He has a BSc in computer

science from Princess Sumaya

University of Technology in 2002.

He finished his master degree in

computer science from New York

institute of technology in 2004. He earned his PhD

degree in computer science from University of

Georgia/ USA in 2010. His research interests are in the

areas of distributed systems, web 2.0, mashups, web

services, and peer-to-peer networks.

